Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Biol Res ; 57(1): 12, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561836

RESUMO

BACKGROUND: Bacterial aromatic degradation may cause oxidative stress. The long-chain flavodoxin FldX1 of Paraburkholderia xenovorans LB400 counteracts reactive oxygen species (ROS). The aim of this study was to evaluate the protective role of FldX1 in P. xenovorans LB400 during the degradation of 4-hydroxyphenylacetate (4-HPA) and 3-hydroxyphenylacetate (3-HPA). METHODS: The functionality of FldX1 was evaluated in P. xenovorans p2-fldX1 that overexpresses FldX1. The effects of FldX1 on P. xenovorans were studied measuring growth on hydroxyphenylacetates, degradation of 4-HPA and 3-HPA, and ROS formation. The effects of hydroxyphenylacetates (HPAs) on the proteome (LC-MS/MS) and gene expression (qRT-PCR) were quantified. Bioaugmentation with strain p2-fldX1 of 4-HPA-polluted soil was assessed, measuring aromatic degradation (HPLC), 4-HPA-degrading bacteria, and plasmid stability. RESULTS: The exposure of P. xenovorans to 4-HPA increased the formation of ROS compared to 3-HPA or glucose. P. xenovorans p2-fldX1 showed an increased growth on 4-HPA and 3-HPA compared to the control strain WT-p2. Strain p2-fldX1 degraded faster 4-HPA and 3-HPA than strain WT-p2. Both WT-p2 and p2-fldX1 cells grown on 4-HPA displayed more changes in the proteome than cells grown on 3-HPA in comparison to glucose-grown cells. Several enzymes involved in ROS detoxification, including AhpC2, AhpF, AhpD3, KatA, Bcp, CpoF1, Prx1 and Prx2, were upregulated by hydroxyphenylacetates. Downregulation of organic hydroperoxide resistance (Ohr) and DpsA proteins was observed. A downregulation of the genes encoding scavenging enzymes (katE and sodB), and gstA and trxB was observed in p2-fldX1 cells, suggesting that FldX1 prevents the antioxidant response. More than 20 membrane proteins, including porins and transporters, showed changes in expression during the growth of both strains on hydroxyphenylacetates. An increased 4-HPA degradation by recombinant strain p2-fldX1 in soil microcosms was observed. In soil, the strain overexpressing the flavodoxin FldX1 showed a lower plasmid loss, compared to WT-p2 strain, suggesting that FldX1 contributes to bacterial fitness. Overall, these results suggest that recombinant strain p2-fldX1 is an attractive bacterium for its application in bioremediation processes of aromatic compounds. CONCLUSIONS: The long-chain flavodoxin FldX1 improved the capability of P. xenovorans to degrade 4-HPA in liquid culture and soil microcosms by protecting cells against the degradation-associated oxidative stress.


Assuntos
Burkholderia , Burkholderiaceae , Flavodoxina , Gliceraldeído/análogos & derivados , Fenilacetatos , Propano , Biodegradação Ambiental , Flavodoxina/metabolismo , Flavodoxina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Proteoma/metabolismo , Proteoma/farmacologia , Cromatografia Líquida , Burkholderia/genética , Burkholderia/metabolismo , Espectrometria de Massas em Tandem , Estresse Oxidativo , Glucose/metabolismo , Solo
2.
J Food Sci ; 89(2): 1167-1186, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38193164

RESUMO

Reuterin is a natural antifungal agent derived from certain strains of Limosilactobacillus reuteri. Our previous study revealed that 6 mM reuterin inhibited completely the conidial germination of aflatoxigenic Aspergillus flavus. This study investigated the potential molecular mechanism of reuterin in inhibiting A. flavus conidial germination, which was pre-assumed that it correlated to the inhibition of some essential enzyme activity involved in conidial germination, specifically 1,3-ß-glucan synthase, chitin synthase, and catalases (catalase, bifunctional catalase-peroxidase, and spore-specific catalase). The complex of 1,3-ß-glucan synthase and chitin synthase with reuterin had a lower binding affinity than that with the substrate. Conversely, the complex of catalases with reuterin had a higher binding affinity than that with the substrate. It was suggested that 1,3-ß-glucan synthase and chitin synthase tended to bind the substrate rather than bind reuterin. In contrast, catalases tended to bind reuterin rather than bind the substrate. Therefore, reuterin could be a potential inhibitor of catalases but may not be an inhibitor of 1,3-ß-glucan synthase and chitin synthase. In this in silico study, we predicted that the potential molecular mechanism of reuterin in inhibiting A. flavus conidial germination was due to the inhibition of catalases activities by competitively binding to the enzymes active sites, thus resulting in the accumulation of reactive oxygen species in cells, leading to cells damage. PRACTICAL APPLICATION: This in silico study revealed that reuterin is a potential inhibitor of catalases in A. flavus, thereby interfering with the antioxidant system during conidial germination. This finding shows that reuterin can be used as an antifungal agent in food or agricultural products, inhibiting conidial germination completely.


Assuntos
Aspergillus flavus , Gliceraldeído/análogos & derivados , Propano , beta-Glucanas , Catalase/metabolismo , Esporos Fúngicos/metabolismo , Antifúngicos/química , Quitina Sintase/metabolismo
3.
Sci Rep ; 12(1): 4570, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35301365

RESUMO

Bacteriocins and reuterin are promising antimicrobials for application in food, veterinary, and medical sectors. In the light of their high potential for application in hand sanitizer, we investigated the skin toxicity of reuterin, microcin J25, pediocin PA-1, bactofencin A, and nisin Z in vitro using neutral red and LDH release assays on NHEK cells. We determined their skin sensitization potential using the human cell line activation test (h-CLAT). Their skin irritation potential was measured on human epidermal model EpiDerm™. We showed that the viability and membrane integrity of NHEK cells remained unaltered after exposure to bacteriocins and reuterin at concentrations up to 400 µg/mL and 80 mg/mL, respectively. Furthermore, microcin J25 and reuterin showed no skin sensitization at concentrations up to 100 µg/mL and 40 mg/mL, respectively, while pediocin PA-1, bactofencin A, and nisin Z caused sensitization at concentrations higher than 100 µg/mL. Tissue viability was unaffected in presence of bacteriocins and reuterin at concentrations up to 200 µg/mL and 40 mg/mL, respectively, which was confirmed by measuring cytokine IL-1α and IL-8 levels and by histological analysis. In conclusion, the current study provides scientific evidence that some bacteriocins and reuterin, could be safely applied topically as sanitizers at recommended concentrations.


Assuntos
Bacteriocinas , Bacteriocinas/metabolismo , Bacteriocinas/toxicidade , Gliceraldeído/análogos & derivados , Humanos , Propano
4.
Cancer Cell ; 40(2): 185-200.e6, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-34951957

RESUMO

Microbial dysbiosis is a colorectal cancer (CRC) hallmark and contributes to inflammation, tumor growth, and therapy response. Gut microbes signal via metabolites, but how the metabolites impact CRC is largely unknown. We interrogated fecal metabolites associated with mouse models of colon tumorigenesis with varying mutational load. We find that microbial metabolites from healthy mice or humans are growth-repressive, and this response is attenuated in mice and patients with CRC. Microbial profiling reveals that Lactobacillus reuteri and its metabolite, reuterin, are downregulated in mouse and human CRC. Reuterin alters redox balance, and reduces proliferation and survival in colon cancer cells. Reuterin induces selective protein oxidation and inhibits ribosomal biogenesis and protein translation. Exogenous Lactobacillus reuteri restricts colon tumor growth, increases tumor reactive oxygen species, and decreases protein translation in vivo. Our findings indicate that a healthy microbiome and specifically, Lactobacillus reuteri, is protective against CRC through microbial metabolite exchange.


Assuntos
Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Microbioma Gastrointestinal , Gliceraldeído/análogos & derivados , Oxirredução , Propano/metabolismo , Animais , Biomarcadores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Metabolismo Energético , Glutationa/metabolismo , Gliceraldeído/metabolismo , Gliceraldeído/farmacologia , Interações entre Hospedeiro e Microrganismos , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Metabolômica/métodos , Metagenômica/métodos , Camundongos , Modelos Biológicos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo , Propano/farmacologia , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
5.
J Microbiol Biotechnol ; 32(2): 170-175, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-34866129

RESUMO

3-Hydroxypropionic acid (3HP) is a platform chemical and can be converted into other valuable C3-based chemicals. Because a large amount of glycerol is produced as a by-product in the biodiesel industry, glycerol is an attractive carbon source in the biological production of 3HP. Although eight 3HP-producing aldehyde dehydrogenases (ALDHs) have been reported so far, the low conversion rate from 3-hydroxypropionaldehyde (3HPA) to 3HP using these enzymes is still a bottleneck for the production of 3HP. In this study, we elucidated the substrate binding modes of the eight 3HP-producing ALDHs through bioinformatic and structural analysis of these enzymes and selected protein engineering targets for developing enzymes with enhanced enzymatic activity against 3HPA. Among ten AbKGSADH variants we tested, three variants with replacement at the Arg281 site of AbKGSADH showed enhanced enzymatic activities. In particular, the AbKGSADHR281Y variant exhibited improved catalytic efficiency by 2.5-fold compared with the wild type.


Assuntos
Azospirillum brasilense , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Azospirillum brasilense/genética , Azospirillum brasilense/metabolismo , Gliceraldeído/análogos & derivados , Glicerol/metabolismo , Engenharia Metabólica , Propano/metabolismo , Engenharia de Proteínas
6.
Nutrients ; 13(6)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072532

RESUMO

Limosilactobacillus reuteri INIA P572 is a strain able to produce the antimicrobial compound reuterin in dairy products, exhibiting a protective effect against some food-borne pathogens. In this study, we investigated some probiotic properties of this strain such as resistance to gastrointestinal passage or to colonic conditions, reuterin production in a colonic environment, and immunomodulatory activity, using different in vitro and in vivo models. The results showed a high resistance of this strain to gastrointestinal conditions, as well as capacity to grow and produce reuterin in a human colonic model. Although the in vitro assays using the RAW 264.7 macrophage cell line did not demonstrate direct immunomodulatory properties, the in vivo assays using a Dextran Sulphate Sodium (DSS)-induced colitic mice model showed clear immunomodulatory and protective effects of this strain.


Assuntos
Trato Gastrointestinal/efeitos dos fármacos , Inflamação/prevenção & controle , Limosilactobacillus reuteri/metabolismo , Probióticos/farmacologia , Animais , Modelos Animais de Doenças , Gliceraldeído/análogos & derivados , Gliceraldeído/metabolismo , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Propano/metabolismo
7.
Food Microbiol ; 98: 103720, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33875197

RESUMO

Strains of Limosilactobacillus reuteri are used as starter and bioprotective cultures and contribute to the preservation of food through the production of fermentation metabolites lactic and acetic acid, and of the antimicrobial reuterin. Reuterin consists of acrolein and 3-hydroxypropionaldehyde (3-HPA), which can be further metabolized to 1,3-propanediol and 3-hydroxypropionic acid (3-HP). While reuterin has been the focus of many investigations, the contribution of 3-HP to the antimicrobial activity of food related reuterin-producers is unknown. We show that the antibacterial activity of 3-HP was stronger at pH 4.8 compared to pH 5.5 and 6.6. Gram-positive bacteria were in general more resistant against 3-HP and propionic acid than Gram-negative indicator strains including common food pathogens, while spoilage yeast and molds were not inhibited by ≤ 640 mM 3-HP. The presence of acrolein decreased the minimal inhibitory activity of 3-HP against E. coli indicating synergistic antibacterial activity. 3-HP was formed during the growth of the reuterin-producers, and by resting cells of L. reuteri DSM 20016. Taken together, this study shows that food-related reuterin producers strains synthesize a second antibacterial compound, which might be of relevance when strains are added as starter or bioprotective cultures to food products.


Assuntos
Anti-Infecciosos/farmacologia , Glicerol/metabolismo , Ácido Láctico/análogos & derivados , Lactobacillaceae/química , Ácido Acético/metabolismo , Anti-Infecciosos/química , Anti-Infecciosos/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Estabilidade de Medicamentos , Fermentação , Microbiologia de Alimentos , Gliceraldeído/análogos & derivados , Gliceraldeído/química , Gliceraldeído/metabolismo , Concentração de Íons de Hidrogênio , Ácido Láctico/química , Ácido Láctico/metabolismo , Ácido Láctico/farmacologia , Lactobacillaceae/crescimento & desenvolvimento , Lactobacillaceae/metabolismo , Propano/química , Propano/metabolismo
8.
Gut Microbes ; 12(1): 1788898, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32804011

RESUMO

Antibiotic resistance is one of the world's greatest public health challenges and adjunct probiotic therapies are strategies that could lessen this burden. Clostridioides difficile infection (CDI) is a prime example where adjunct probiotic therapies could decrease disease incidence through prevention. Human-derived Lactobacillus reuteri is a probiotic that produces the antimicrobial compound reuterin known to prevent C. difficile colonization of antibiotic-treated fecal microbial communities. However, the mechanism of inhibition is unclear. We show that reuterin inhibits C. difficile outgrowth from spores and vegetative cell growth, however, no effect on C. difficile germination or sporulation was observed. Consistent with published studies, we found that exposure to reuterin stimulated reactive oxygen species (ROS) in C. difficile, resulting in a concentration-dependent reduction in cell viability that was rescued by the antioxidant glutathione. Sublethal concentrations of reuterin enhanced the susceptibility of vegetative C. difficile to vancomycin and metronidazole treatment and reduced toxin synthesis by C. difficile. We also demonstrate that reuterin is protective against C. difficile toxin-mediated cellular damage in the human intestinal enteroid model. Overall, our results indicate that ROS are essential mediators of reuterin activity and show that reuterin production by L. reuteri is compatible as a therapeutic in a clinically relevant model.


Assuntos
Clostridioides difficile/efeitos dos fármacos , Gliceraldeído/análogos & derivados , Propano/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Antibacterianos/farmacologia , Clostridioides difficile/crescimento & desenvolvimento , Clostridioides difficile/metabolismo , Clostridioides difficile/patogenicidade , Sinergismo Farmacológico , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Gliceraldeído/metabolismo , Gliceraldeído/farmacologia , Humanos , Limosilactobacillus reuteri/metabolismo , Organoides/efeitos dos fármacos , Organoides/microbiologia , Estresse Oxidativo/efeitos dos fármacos , Probióticos/metabolismo , Propano/metabolismo , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/crescimento & desenvolvimento
9.
Int J Mol Sci ; 21(7)2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283652

RESUMO

Glyceraldehyde-derived advanced glycation end products (glycer-AGEs) contribute to proximal tubulopathy in diabetes. However, what glycer-AGE structure could evoke tubular cell damage remains unknown. We first examined if deleterious effects of glycer-AGEs on reactive oxygen species (ROS) generation in proximal tubular cells were blocked by DNA-aptamer that could bind to glyceraldehyde-derived pyridinium (GLAP) (GLAP-aptamer), and then investigated whether and how GLAP caused proximal tubular cell injury. GLAP-aptamer and AGE-aptamer raised against glycer-AGEs were prepared using a systemic evolution of ligands by exponential enrichment. The binding affinity of GLAP-aptamer to glycer-AGEs was measured with a bio-layer interferometry. ROS generation was evaluated using fluorescent probes. Gene expression was analyzed by reverse transcription-polymerase chain reaction (RT-PCR). GLAP-aptamer bound to glycer-AGEs with a dissociation constant of 7.7 × 10-5 M. GLAP-aptamer, glycer-AGE-aptamer, or antibodies directed against receptor for glycer-AGEs (RAGE) completely prevented glycer-AGE- or GLAP-induced increase in ROS generation, MCP-1, PAI-1, or RAGE gene expression in tubular cells. Our present results suggest that GLAP is one of the structurally distinct glycer-AGEs, which may mediate oxidative stress and inflammatory reactions in glycer-AGE-exposed tubular cells. Blockade of the interaction of GLAP-RAGE by GLAP-aptamer may be a therapeutic target for proximal tubulopathy in diabetic nephropathy.


Assuntos
Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Gliceraldeído/farmacologia , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/metabolismo , Compostos de Piridínio/farmacologia , Biomarcadores , Células Cultivadas , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Produtos Finais de Glicação Avançada/farmacologia , Gliceraldeído/análogos & derivados , Humanos , Túbulos Renais/patologia , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Estresse Oxidativo/efeitos dos fármacos , Compostos de Piridínio/química , Espécies Reativas de Oxigênio/metabolismo
10.
Astrobiology ; 20(1): 1-14, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31977256

RESUMO

Extreme factors such as space microgravity, radiation, and magnetic field differ from those that occur on Earth. Microgravity may induce and select some microorganisms for physiological, metabolic, and/or genetic variations. This study was conducted to determine the effects of simulated microgravity conditions on the metabolism and gene expression of the probiotic bacterium Lactobacillus reuteri DSM17938. To investigate microbial response to simulated microgravity, two devices-the rotating wall vessel (RWV) and the random positioning machine (RPM)-were used. Microbial growth, reuterin production, and resistance to gastrointestinal passage were assessed, and morphological characteristics were analyzed by scanning electron microscopy. The expression of some selected genes that are responsive to stress conditions and to bile salts stress was evaluated through real-time quantitative polymerase chain reaction assay. Monitoring of bacterial growth, cell size, and shape under simulated microgravity did not reveal differences compared with 1 × g controls. On the contrary, an enhanced production of reuterin and a greater tolerance to the gastrointestinal passage were observed. Moreover, some stress genes were upregulated under RWV conditions, especially after 24 h of treatment, whereas RPM conditions seemed to determine a downregulation over time of the same stress genes. These results show that simulated microgravity could alter some physiological characteristics of L. reuteri DSM17938 with regard to tolerance toward stress conditions encountered on space missions and could be useful to elucidate the adaptation mechanisms of microbes to the space environment.


Assuntos
Trato Gastrointestinal/microbiologia , Regulação Bacteriana da Expressão Gênica , Gliceraldeído/análogos & derivados , Limosilactobacillus reuteri/crescimento & desenvolvimento , Limosilactobacillus reuteri/genética , Propano/metabolismo , Estresse Fisiológico/genética , Simulação de Ausência de Peso , Gliceraldeído/metabolismo , Limosilactobacillus reuteri/ultraestrutura
11.
Cell Metab ; 31(1): 115-130.e6, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31708445

RESUMO

Iron is a central micronutrient needed by all living organisms. Competition for iron in the intestinal tract is essential for the maintenance of indigenous microbial populations and for host health. How symbiotic relationships between hosts and native microbes persist during times of iron limitation is unclear. Here, we demonstrate that indigenous bacteria possess an iron-dependent mechanism that inhibits host iron transport and storage. Using a high-throughput screen of microbial metabolites, we found that gut microbiota produce metabolites that suppress hypoxia-inducible factor 2α (HIF-2α) a master transcription factor of intestinal iron absorption and increase the iron-storage protein ferritin, resulting in decreased intestinal iron absorption by the host. We identified 1,3-diaminopropane (DAP) and reuterin as inhibitors of HIF-2α via inhibition of heterodimerization. DAP and reuterin effectively ameliorated systemic iron overload. This work provides evidence of intestine-microbiota metabolic crosstalk that is essential for systemic iron homeostasis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ferritinas/metabolismo , Microbioma Gastrointestinal , Ferro/metabolismo , Lactobacillus/metabolismo , Adolescente , Animais , Antibacterianos/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Diaminas/farmacologia , Dimerização , Duodeno/efeitos dos fármacos , Duodeno/microbiologia , Fezes/microbiologia , Feminino , Ferritinas/genética , Microbioma Gastrointestinal/fisiologia , Gliceraldeído/análogos & derivados , Gliceraldeído/farmacologia , Homeostase , Humanos , Lactobacillus/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Organoides/efeitos dos fármacos , Organoides/microbiologia , Probióticos/farmacologia , Propano/farmacologia , Transdução de Sinais/efeitos dos fármacos
12.
Mol Nutr Food Res ; 63(10): e1801177, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30815965

RESUMO

SCOPE: Heterocyclic aromatic amines (HAAs) are process-induced food contaminants with high mutagenic and/or carcinogenic potential. Although the human gut microbiota is known to affect the metabolism of dietary constituents, its impact on HAA metabolism and toxicity has been little studied. Here, the glycerol-dependent metabolism of seven foodborne HAAs (AαC, Trp-P-1, harman, norharman, PhIP, MeIQx, and MeIQ) by the human fecal microbiota is investigated. METHODS AND RESULTS: As analyzed by HPLC-DAD/FLD, the extent of conversion is strongly dependent on glycerol supplementation and HAA structure. AαC (60-100%) and the 2-aminoimidazoazarenes (up to 58%) are especially prone to microbial conversion. Based on high-resolution MS and/or NMR spectroscopy data, 70 fecal metabolites are identified in total, mainly formed by chemical reactions with one or two molecules of microbially derived reuterin. Moreover, it has been demonstrated that the human fecal microbiota can further transform reuterin adducts by reduction and/or hydroxylation reactions. Upon isolation, some reuterin-induced HAA metabolites appear to be partially unstable, complicating structural identification. CONCLUSION: The formation of microbial metabolites needs to be incorporated into risk assessment considerations for HAAs in human health. In this study, several HAA metabolites, mainly reuterin-dependent, are identified in vitro, providing the basis for future human studies investigating microbial HAA metabolism.


Assuntos
Aminas/metabolismo , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Gliceraldeído/análogos & derivados , Compostos Heterocíclicos de Anéis Fundidos/metabolismo , Propano/metabolismo , Adulto , Aminas/farmacocinética , Animais , Carbolinas/metabolismo , Carbolinas/farmacocinética , Feminino , Contaminação de Alimentos , Gliceraldeído/metabolismo , Gliceraldeído/farmacocinética , Harmina/análogos & derivados , Harmina/metabolismo , Harmina/farmacocinética , Compostos Heterocíclicos de Anéis Fundidos/farmacocinética , Humanos , Masculino , Microssomos Hepáticos/metabolismo , Pessoa de Meia-Idade , Propano/farmacocinética , Quinolinas/metabolismo , Quinolinas/farmacocinética , Quinoxalinas/metabolismo , Quinoxalinas/farmacocinética , Ratos Wistar
13.
J Biotechnol ; 289: 135-143, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30503904

RESUMO

Lactobacillus reuteri metabolizes glycerol through propanediol-utilization (Pdu) pathway to 1,3-propanediol (1,3-PD) via 3-hydroxypropionaldehyde (3-HPA) as intermediate. In the resting cells, the oxidized co-factor obtained in the reaction is regenerated by simultaneous oxidation of 3-HPA to 3-hydroxypropionic acid (3-HP) using propionaldehyde dehydrogenase (PduP), phosphotransacylase (PduL) and propionate kinase (PduW). We have earlier shown that the use of resting cells of recombinant Escherichia coli expressing the oxidative pathway gives the highest theoretical yield of 1 mol 3-HP per mol 3-HPA but is limited by cofactor depletion. In the present study, the gene encoding the enzyme NAD(P)H oxidase (LreuNox) that utilizes molecular oxygen as substrate, was isolated from L. reuteri and heterologously overexpressed in E. coli. LreuNox has a pH optimum of 6 and exhibits Vmax of 101.1 ± 2.2 U/mg with NADH, which is 30% higher than that for NADPH. Co-expression of LreuNox with PduP, PduL and PduW in E. coli enhances the biocatalytic lifetime as well as productivity at least two-fold compared to that achieved without co-factor regeneration.


Assuntos
Proteínas de Bactérias/metabolismo , Gliceraldeído/análogos & derivados , Ácido Láctico/análogos & derivados , Limosilactobacillus reuteri/enzimologia , NADPH Oxidases/metabolismo , Propano/metabolismo , Propilenoglicóis/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Gliceraldeído/metabolismo , Ácido Láctico/metabolismo
14.
Food Microbiol ; 78: 11-17, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30497591

RESUMO

Clostridium tyrobutyricum is a bacteria of concern in the cheese industry, capable of surviving the manufacturing process and causing butyric acid fermentation and late blowing defect of cheese. In this work, we implement a method based on the cell wall-binding domain (CBD) of endolysin CTP1L, which detects C. tyrobutyricum, to monitor its evolution in cheeses challenged with clostridial spores and in the presence or absence of reuterin, an anti-clostridial agent. For this purpose, total bacteria were extracted from cheese samples and C. tyrobutyricum cells were specifically labelled with the CBD of CTP1L attached to green fluorescent protein (GFP), and detected by fluorescence microscopy. By using this GFP-CBD, germinated spores were visualized on day 1 in all cheeses inoculated with clostridial spores. Vegetative cells of C. tyrobutyricum, responsible for butyric acid fermentation, were detected in cheeses without reuterin from 30 d onwards, when LBD symptoms also became evident. The number of fluorescent Clostridium cells increased during ripening in the blowing cheeses. However, vegetative cells of C. tyrobutyricum were not detected in cheese containing the antimicrobial reuterin, which also did not show LBD throughout ripening. This simple and fast method provides a helpful tool to study the evolution of C. tyrobutyricum during cheese ripening.


Assuntos
Parede Celular/metabolismo , Queijo/microbiologia , Clostridium tyrobutyricum/metabolismo , Endopeptidases/metabolismo , Microbiologia de Alimentos/métodos , Esporos Bacterianos/metabolismo , Animais , Ácido Butírico/metabolismo , Parede Celular/química , Queijo/análise , Clostridium tyrobutyricum/efeitos dos fármacos , Clostridium tyrobutyricum/crescimento & desenvolvimento , DNA Bacteriano , Feminino , Fermentação , Gliceraldeído/análogos & derivados , Gliceraldeído/farmacologia , Proteínas de Fluorescência Verde/metabolismo , Leite/microbiologia , Imagem Óptica/métodos , Propano/farmacologia , Ovinos
15.
Int J Food Microbiol ; 289: 182-188, 2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30253311

RESUMO

Reuterin is an antimicrobial agent produced by conversion of glycerol and excreted by several bacterial species including the food grade lactic acid bacterium Lactobacillus reuteri. Several inhibitory activities have been reported to reuterin against a broad range of Gram-positive and Gram-negative bacteria, bacterial spores, moulds, yeasts and protozoa. However, the antifungal and anti-yeast activity of reuterin is poorly documented. The aim of the current work was:1) To quantify the minimum inhibitory activity (MIC) and the minimum fungicidal activity (MFC) of reuterin against a representative panel of the most abundant fungi and yeast species associated with food contamination; 2) To investigate the application of reuterin as antifungal agent for biopreservation of yogurt. Reuterin was produced by L. reuteri ATCC 53608 in MRS and glycerol solution then purified before using. Our data showed that purified reuterin inhibited the growth of tested microorganisms at a concentration of 11 mM or less. Moreover, reuterin showed a fungicidal activity (killed 99.9% of all tested microorganisms) at concentrations equal or below 15.6 mM as indicated by MFC. Values of MFC were comprised between 1.0 and 4.8 of the MIC values, suggesting a potent fungicidal mechanism on both yeasts and filamentous moulds with one exception only. In yogurt, reuterin showed a fungistatic effect at a concentration of 1.38 mM while a fungicidal effect was obtained at 6.9 mM. Therefore, reuterin has a high potential as a food preservative, particularly owing to its biochemical properties and antibacterial and antifungal activities.


Assuntos
Microbiologia de Alimentos/métodos , Fungos/efeitos dos fármacos , Gliceraldeído/análogos & derivados , Propano/farmacologia , Leveduras/efeitos dos fármacos , Iogurte/microbiologia , Antifúngicos/farmacologia , Gliceraldeído/farmacologia , Limosilactobacillus reuteri/química
16.
J Basic Microbiol ; 58(12): 1053-1060, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30240033

RESUMO

The influence of environmental factors such as glycerol concentration, time of production, presence of Escherichia coli, and two different strains of Lactobacillus reuteri (ATCC 55730 and ATCC 53608) on 3-hydroxypropionaldehyde (3-HPA) production was analyzed. Additionally, the influence of those factors on gene expression in the 3-HPA production pathway was evaluated. The genes studied were GldC, cbiP, and Lreu_1734. The results of this study showed that the principal environmental factors that influence 3-HPA production are glycerol concentration and Lactobacillus reuteri strain. As glycerol concentration increased, 3-HPA content increased. The greatest 3-HPA concentration (56.6 mM ±5.99) was achieved by L. reuteri ATCC 55730. Gene expression was also affected by environmental factors. Factor that showed the greatest influence were also strain and glycerol concentration. The genes cbiP, GldC, and Lreu_1734 had basal gene expression in glycerol absence; however, glycerol regulated its expression. Glycerol induced overexpression of cbiP and GldC genes (Strain ATCC 53608), probably to ensure its efficient utilization. On the contrary, glycerol concentration suppressed Lre_1734 expression in both analyzed strains, as a mechanism for 3-HPA accumulation. Down-regulation was observed in all the genes tested in strain ATCC 55730, probably due to feedback inhibition by 3-HPA.


Assuntos
Gliceraldeído/análogos & derivados , Glicerol , Limosilactobacillus reuteri/metabolismo , Propano/metabolismo , Vias Biossintéticas/genética , Vias Biossintéticas/fisiologia , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genes Bacterianos/genética , Gliceraldeído/análise , Gliceraldeído/metabolismo , Glicerol/metabolismo , Glicerol/farmacologia , Interações Microbianas , Propano/análise
17.
J Am Chem Soc ; 140(27): 8487-8496, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29894625

RESUMO

We present a series of QM/MM calculations aimed at understanding the mechanism of the biological dehydration of glycerol. Strikingly and unusually, this process is catalyzed by two different radical enzymes, one of which is a coenzyme-B12-dependent enzyme and the other which is a coenzyme-B12-independent enzyme. We show that glycerol dehydration in the presence of the coenzyme-B12-dependent enzyme proceeds via a 1,2-OH shift, which benefits from a significant catalytic reduction in the barrier. In contrast, the same reaction in the presence of the coenzyme-B12-independent enzyme is unlikely to involve the 1,2-OH shift; instead, a strong preference for direct loss of water from a radical intermediate is indicated. We show that this preference, and ultimately the evolution of such enzymes, is strongly linked with the reactivities of the species responsible for abstracting a hydrogen atom from the substrate. It appears that the hydrogen-reabstraction step involving the product-related radical is fundamental to the mechanistic preference. The unconventional 1,2-OH shift seems to be required to generate a product-related radical of sufficient reactivity to cleave the relatively inactive C-H bond arising from the B12 cofactor. In the absence of B12, it is the relatively weak S-H bond of a cysteine residue that must be homolyzed. Such a transformation is much less demanding, and its inclusion apparently enables a simpler overall dehydration mechanism.


Assuntos
Clostridium butyricum/enzimologia , Gliceraldeído/análogos & derivados , Glicerol/metabolismo , Hidroliases/metabolismo , Klebsiella pneumoniae/enzimologia , Propano/metabolismo , Vitamina B 12/metabolismo , Biocatálise , Clostridium butyricum/química , Clostridium butyricum/metabolismo , Gliceraldeído/química , Gliceraldeído/metabolismo , Glicerol/química , Klebsiella pneumoniae/química , Klebsiella pneumoniae/metabolismo , Modelos Moleculares , Propano/química , Vitamina B 12/química
18.
Int J Food Microbiol ; 271: 60-66, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29494893

RESUMO

In this work a bio-preservation technique was applied to sea bass fillets in order to preserve their quality. The preservation consisted in the application of two kinds of active coatings on the product surface differing in the fermentation time of alginate solution by L. reuteri plus glycerol (24 and 48 h). This technological strategy was chosen because it has been demonstrated that L. reuteri produces the reuterin as an intermediate metabolite during the anaerobic fermentation of glycerol. To assess the antimicrobial effects of sodium alginate with L. reuteri and glycerol, both in vitro and in vivo tests were carried out. The active films, in particular at 48 h fermentation, showed a good antibacterial activity, confirmed also by the major reuterin concentration. To prove the effectiveness of the treatments, microbial and sensory attributes were monitored by in vivo test on fish fillets. Results highlighted that the two active sodium alginate coatings showed a good antibacterial activity. In sea bass fillets stored at 4 °C, proliferation of main spoilage microorganisms was delayed with a consequent preservation of sensory attributes. In particular, it was found that improving the fermentation time (48 h) a better microbiological and sensory quality was achieved.


Assuntos
Alginatos/farmacologia , Conservação de Alimentos/métodos , Gliceraldeído/análogos & derivados , Glicerol/farmacologia , Limosilactobacillus reuteri/efeitos dos fármacos , Preservação Biológica/métodos , Propano/metabolismo , Animais , Bass , Fermentação , Inocuidade dos Alimentos , Ácido Glucurônico/farmacologia , Gliceraldeído/metabolismo , Glicerol/metabolismo , Ácidos Hexurônicos/farmacologia , Limosilactobacillus reuteri/metabolismo , Alimentos Marinhos/microbiologia
19.
Appl Microbiol Biotechnol ; 102(4): 1673-1685, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29335877

RESUMO

Vector-dependent gene overexpression typically relies on an efficient operon and sufficient RNA polymerases (RNAPs). The lac (lactose) operon is a paradigm of transcription control, and cyclic AMP receptor protein (CRP) is a global regulator capable of recruiting RNAPs. However, the gap between lac operon and CRP has not been well bridged. In this work, CRP was fused to lac repressor protein (lacI) to form an artificial transcription factor (ATF) with the expectation that when LacI acted on the lacO-positioned upstream of gene of interest, the LacI-tethered CRP would trap RNAPs and thus improve the expression of PuuC, an aldehyde dehydrogenase catalyzing 3-hydroxypropionaldehyde (3-HPA) to 3-hydroxypropionic acid (3-HP) in Klebsiella pneumoniae. As expected, SDS-PAGE and HPLC showed enhanced PuuC expression and 3-HP production, respectively, compared to the control strain without expressing chimeric protein LacI-CRP. Moreover, quantitative real-time PCR demonstrated increased transcription levels of both PuuC and RNAP coding genes. In shake-flask cultivation, the recombinant K. pneumoniae strain coexpressing LacI-CRP and PuuC produced 1.67-fold of 3-HP relative to the stain only overexpressing PuuC. In bioreactor cultivation, the strain coexpressing LacI-CRP and PuuC produced 35.1 g/L 3-HP, whereas the strain without expressing LacI-CRP generated only 9.8 g/L 3-HP. Overall, these results indicated that as an ATF, LacI-CRP significantly boosted PuuC expression and 3-HP production. We envision that LacI-CRP as a plug-and-play part can be used for regulating gene expression.


Assuntos
Proteína Receptora de AMP Cíclico/metabolismo , Expressão Gênica , Repressores Lac/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição/metabolismo , Aldeído Desidrogenase/biossíntese , Cromatografia Líquida de Alta Pressão , Proteína Receptora de AMP Cíclico/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Eletroforese em Gel de Poliacrilamida , Gliceraldeído/análogos & derivados , Gliceraldeído/metabolismo , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Repressores Lac/genética , Ácido Láctico/análogos & derivados , Ácido Láctico/metabolismo , Regiões Operadoras Genéticas , Propano/metabolismo , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Fatores de Transcrição/genética
20.
Probiotics Antimicrob Proteins ; 10(2): 168-175, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29103130

RESUMO

Helicobacter pylori is an infectious agent commonly associated with gastrointestinal diseases. The use of probiotics to treat this infection has been documented, however, their potential antimicrobial metabolites have not yet been investigated. In the present study, the effect of reuterin produced by Lactobacillus reuteri on H. pylori growth and virulence gene expression was evaluated. It was observed that reuterin caused significant (P < 0.05) H. pylori growth inhibition at concentrations from 0.08 to 20.48 mM, with minimal inhibitory concentrations (MICs) of 20.48 mM for H. pylori ATCC700824 and 10.24 mM for H. pylori ATCC43504. In a reuterin bacterial killing assay, it was observed that half of the MIC value for H. pylori (ATCC700824) significantly (P < 0.01) reduced colony numbers from 5.65 ± 0.35 to 3.78 ± 0.35 Log10 CFU/mL after 12 h of treatment and then increased them to 5.25 ± 0.23 Log10 CFU/mL at 24 h; at its MIC value (20.48 mM), reuterin abrogated (P < 0.01) H. pylori (ATCC700824) growth after 20 h of culture. In addition, reuterin significantly (P < 0.01) reduced H. pylori (ATCC 43504) colony numbers from 5.65 ± 0.35 to 4.1 ± 0.12 Log10 CFU/mL from 12 to 24 h of treatment and abrogated its growth at its MIC value (10.24 mM), after 20 h of treatment. Reuterin did not alter normal human gastric Hs738.St/Int cell viability at the concentrations tested for H. pylori strains. Furthermore, 10 µM reuterin was shown to significantly (P < 0.01) reduce mRNA relative expression levels of H. pylori virulence genes vacA and flaA at 3 h post-treatment, whose effect was higher at 6 h post-treatment, as measured by RT-qPCR. The observed direct antimicrobial effect and the downregulation of expression of virulence genes on H. pylori by reuterin may contribute to the understanding of the mechanisms of action of probiotics against H. pylori.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Gliceraldeído/análogos & derivados , Infecções por Helicobacter/microbiologia , Helicobacter pylori/efeitos dos fármacos , Propano/farmacologia , Fatores de Virulência/genética , Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Gliceraldeído/metabolismo , Gliceraldeído/farmacologia , Helicobacter pylori/genética , Helicobacter pylori/crescimento & desenvolvimento , Helicobacter pylori/metabolismo , Humanos , Limosilactobacillus reuteri/metabolismo , Testes de Sensibilidade Microbiana , Propano/metabolismo , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...